Using social media to find great sources

Roxanne Khamsi @rkhamsi
April 15, 2021
Who the heck am I?
Science writers needs to reach highly specialized sources

1. i.e. do you need to reach an infectious disease researcher or evolutionary virologist?

2. is this source familiar with the niche experiment and/or related methods?

3. do you need to reach a patient with an ultra-rare medical condition?
Traditional ways to find sources

1. PubMed (or Google Scholar)
2. Research paper references (related to step 1, but this is a deeper dive)
3. Press releases
4. Patient advocacy groups
5. Professional societies
6. University media teams
7. Also… don’t forget: ClinicalTrials.gov
A new way to find sources: social media

POLL 1: Do you currently use social media as a way to find sources?

- Yes
- No
A new way to find sources: social media

POLL 2: If you DO use social media to find sources, which one do you use most?

- Twitter
- LinkedIn
- Instagram
- Facebook
- YouTube
- Other (TikTok, Snapchat, Reddit?)
Reporting on medical foods for Phenylketonuria (PKU)

- an inborn error of metabolism where individuals don’t metabolize the amino acid phenylalanine well
- Expensive “medical foods” made without phenylalanine given to avoid harm
- But not always covered by insurance, especially for adults
- Looking for an adult with PKU
The outcome

Rethinking the formula

Health insurance covers drugs approved by regulatory agencies, but it often doesn’t pay for the products known as biologics, which is why patients who need these drugs pay the extra cost. And often, the extra cost is out of pocket, because the drug companies do not offer copay cards. Even if patients can afford the drug, they often cannot afford the Medicare Part D premiums.

Kate Maguire has not yet explained to the bedside of a patient who has cancer, and she is not yet in her office at the University of Pennsylvania, but she is working on a project that could have a major impact on the future of cancer care. The project, called the “cancer cures” initiative, is a partnership between pharmaceutical companies and the National Cancer Institute (NCI) that aims to identify new drugs and therapies for the treatment of cancer.

The initiative is based on the idea that cancer drugs are not just for cancer patients, but for all patients who need them. The goal of the initiative is to develop new drugs and therapies that can be used to treat a variety of diseases, including cancer, heart disease, and diabetes.

Kate Maguire is one of the most promising cancer experts in the world, and she is working with a team of experts from around the world to develop new drugs and therapies. They are working with pharmaceutical companies to identify new drugs and therapies that can be used to treat cancer, heart disease, and diabetes.

Kate Maguire is one of the most promising cancer experts in the world, and she is working with a team of experts from around the world to develop new drugs and therapies. They are working with pharmaceutical companies to identify new drugs and therapies that can be used to treat cancer, heart disease, and diabetes.

Kate Maguire is one of the most promising cancer experts in the world, and she is working with a team of experts from around the world to develop new drugs and therapies. They are working with pharmaceutical companies to identify new drugs and therapies that can be used to treat cancer, heart disease, and diabetes.

Kate Maguire is one of the most promising cancer experts in the world, and she is working with a team of experts from around the world to develop new drugs and therapies. They are working with pharmaceutical companies to identify new drugs and therapies that can be used to treat cancer, heart disease, and diabetes.
Obstacles to Eliciting HIV-1 Neutralizing Antibodies

- First generation vaccine proteins (e.g. monomeric gp120) induced high binding, but poor neutralizing antibodies
- Natural HIV-1 infection initially generates strain-specific neutralizing antibodies in most subjects
- Broadly neutralizing antibodies (cross-react with many HIV-1 strains) are found in sera of only ~20% of HIV-1 infected subjects

Structure-Based Vaccine Design and B-cell Ontogeny in the Modern Era of Vaccinology

2,240 views • Dec 8, 2016
(and Vimeo....) - using videos to see the experiment
A year ago, in January, when John Mascola heard that a new coronavirus had been detected

in an animal market in Wuhan, China, he left everything at his desk on the fourth floor of the US government’s Vaccine Research Center and walked up one flight of stairs to the office of a longtime colleague, Nicole Doria-Rose. Felicitously, Mascola, who is the center’s director, had been working on ways to immunize people against coronaviruses. A vaccine against this new bug, soon to be known as SARS-CoV-2, was the first priority, the only surefire way of halting the growing pandemic. Mascola and Doria-Rose, an immunologist, go way back. And they hoped there was another approach that might also contribute to the cause. One they’d been chasing for more than a decade. They wanted to find a monoclonal antibody. Everybody knows about vaccines, which teach the immune system to fight invaders, but monoclonal antibody drugs are far simpler. To develop them, scientists most commonly add a pristine, self-wielded, do-it-yourself antibody to mouse or human, or other species, cells. Then, the scientists insert the genes for those antibodies into viruses that can infect people. When infected tissue is grown in a petri dish, the newly minted human antibodies can be collected directly from the conditioned media that is produced. These are the start of the process. The Food and Drug Administration approved it for emergency use on November 15. Similarly, a combination of other antibody drugs, made by the company Regeneron, was given to President Donald Trump when he contracted the virus. Like the vaccines made by Pfizer and Moderna, these monoclonals were also developed for coronavirus.

Mascola was interested in developing antibody treatments. In the early 2000s, not long after he joined the Vaccine Research Center in Bethesda, Maryland, he knew that if scientists could make a virus that could produce antibodies, they could use antibodies to treat diseases. As a researcher, Mascola did, and he was probably trying to understand HIV. It had killed an estimated 22 million people and seemed unattainable. HIV wasn’t even in common as an asymptomatic illness, healthy adults in the U.S. and Europe. But the deadly virus was the best immune system for the virus. The virus could be found in the blood of infected people. In the late 1980s, rays to treat HIV patients with new antibodies. But the scientists didn’t know how to make them. Then, from each of the patients who had this disease, they could collect antibodies and analyze harmless viruses. The first product went to a few people, but not to the patients. When scientists began making antibodies, they added them to cells in a cell culture. They used mammalian cells to produce the antibodies and injected the cells into the human body. But they were antibodies to fight cancer. They took a line of specially engineered human cells, designed to grow in a way that would not interfere with HIV, and bathed them in antibodies. Then they exposed the cells to the virus. If the antibody was a dead killer, the infected cells would glow. If it had superpowers, they would kill the cells. The first antibodies failed. But the next generation of human cells, called CAR T cells, was much more effective. This work on the human monoclonal antibodies was a breakthrough in the fight against HIV.

That antibody came from a man named Dr. Dori R. Rose, who smiled as his wife participated when they came to the vaccine research center. He made the antibodies in 2014, the first from the Vaccine Research Center. It took almost a decade to develop a drug to treat and prevent HIV, the same time that the virus was increasing in prevalence. In 2019, people in the United States began thinking about the virus. The patients were being treated for the virus. People still contracted HIV, but the antibody could be used in the early stages of the disease. As the virus began to spread, the effect of the antibodies to make HIV drugs became less efficient. People were living longer. But some people were being treated with the drugs. People were living longer. People were being treated with the drugs. People were being treated with the drugs. But the antibody continued to work.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades. The scientists worked on the drug continuously. But they had the antiviral antibodies for decades. The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.

The scientists worked on the drug continuously. But they had the antiviral antibodies for decades.
YouTube as a way to find sources - tips

1. Find patients’ stories and learn their point of view
2. If appropriate, follow up with online research to find their contact information
3. Explore topics to find lectures with articulate scientific sources
4. Verify the scientific authority of the sources on YouTube (on PubMed)
5. If you are having trouble picturing an experiment, find it on YouTube/Vimeo
Reporting positive tests for Covid-19 months out

- some people continuously test positive for Covid-19 many weeks out from their first positive test
- But it is rare
- As a reporter, it’s difficult to find a person with this situation
Facebook: How I found Natalie
Facebook: Reach out to group moderators
The outcome
Facebook as a way to find sources - tips

1. Be conscious that people might not expect to hear from a reporter this way
2. Approach with respect
3. There are many collective groups to tap into
4. Moderators of closed Facebook groups can help you reach their members
5. Reach out to moderators with direct messages
LinkedIn: Using “People Search”

About 4,400 results

- Luis Jodar • 2nd
 - SVP & Chief Medical Officer, Pfizer Vaccines
 - Greater Philadelphia
 - Current: SVP & Chief Medical Officer, Vaccines at Pfizer
 - Art Caplan is a shared connection
 - Connect

- Anna Kolenc • 2nd
 - Territory Business Manager - Vaccines at Pfizer
 - Coquitlam, BC
 - Current: Vaccines Territory Business Manager at Pfizer
 - Connect

- Janet Ward • 3rd
 - Public Health Educator - Vaccines at Pfizer
 - Grey Highlands, ON
 - Connect

- Darius Hughes • 2nd
 - Head of Pfizer Vaccines UK
 - Tadworth
 - Current: Head of Vaccines Business Unit UK and Ireland at Pfizer
 - Gozdlo Zerla is a shared connection
 - Connect

- Kena Swanson • 2nd
 - Director, Viral Vaccines
 - Pearl River, NY
 - Past: Senior Principal Scientist at Pfizer - Research and development of viral vaccines. Leading a dynamic and collaborative group in...
 - Nicholas Jackson is a shared connection
 - Connect

Saved searches:
- Create search alert

See who’s viewed your profile in the last 90 days
- Restart Trial
Use LinkedIn as a resource

Find and contact the right sources, stay updated on trends, find valuable insights, and build readership with our LinkedIn for Journalists program.

Start connecting now. Expand your network by joining our community of journalists.

Join group
LinkedIn — special resources for journalists

Save the date: LinkedIn for Journalists webinar

Our introductory webinars happen in March, June, September, and December.

March 18, 2021

Our next webinar will take place on March 18, 2021 8:00 AM PT / 11:00 AM ET

Applications are closed.
LinkedIn as a way to find sources - tips

1. Don’t just ‘connect’ with a source you want to reach, message them.
2. Use the ‘people search’ to find individuals, especially in industry
3. LinkedIn is a great way to find *former* employees who can say more
4. Consider attending seminars for journalists held by LinkedIn for more info
The big one… Twitter
Twitter tips: Make lists to aggregate sources on topics
Twitter tips: Use the ‘people’ function in search (but vet!)
Twitter tips: Drop in a link of a paper — reverse search
Twitter tips: Drop in a link of a paper — reverse search
Twitter as a way to find sources - tips

1. Make lists of people — lots of them — on topics you are reporting
2. Look at the lists of the people on the lists you are making (meta!)
3. Search the topic you are reporting on and look at ‘people’ search result
4. Drop in the URL of a paper you are writing about to see who is discussing it
5. Not everyone on Twitter has the credentials to be a source — vet carefully!
Coda... Instagram
Instagram and the power of hashtags (#)
cysticfibrosisfighter
A new way to find sources: social media

POLL 3: After listening to these examples, which social media tool are you now most likely to try for the first time in the next year to find sources:

- Twitter
- LinkedIn
- Instagram
- Facebook
- YouTube
- Other (TikTok, Snapchat, Reddit?)
Final points

1. Supplement your traditional sourcing tools with social media tools
2. Social media can be a great way to find patients eager to share their stories
3. When searching on social media look at ‘people’ search result
4. Use specific hashtags to narrow your search; or combined search terms
5. Vet carefully, and try to find sources who are most specifically qualified
Thank you! Questions? Comments?
Let’s talk.
And if you need to find me on Twitter, I’m at @rkhamsi...